人工智能

SDXL Turbo、LCM相继发布,AI画图进入实时生成时代:字打多快,出图就有多快

字号+作者: 来源:机器之心公众号 2023-11-30 14:04 评论(创建话题) 收藏成功收藏本文

声明:本文来自于微信公众号 机器之心(ID:almosthuman2014),作者:机器之心,授权站长之家转载发布。本周二,Stability AI 推出了新一代图像合成模型 Stable Di'...

声明:本文来自于微信公众号 机器之心(ID:almosthuman2014),作者:机器之心,授权站长之家转载发布。wmW品论天涯网

本周二,Stability AI 推出了新一代图像合成模型 Stable Diffusion XL Turbo,引发了一片叫好。人们纷纷表示,图像到文本生成从来没有这么轻松。wmW品论天涯网

你可以不需要其他操作,只用在文本框中输入你的想法,SDXL Turbo 就能够迅速响应,生成对应内容。一边输入,一边生成,内容增加、减少,丝毫不影响它的速度。wmW品论天涯网

图片wmW品论天涯网

图片wmW品论天涯网

你还可以根据已有的图像,更加精细地完成创作。手中只需要拿一张白纸,告诉 SDXL Turbo 你想要一只白猫,字还没打完,小白猫就已经在你的手中了。wmW品论天涯网

图片wmW品论天涯网

SDXL Turbo 模型的速度达到了近乎「实时」的程度,让人不禁开始畅想:图像生成模型是不是可以干些其他事了。wmW品论天涯网

有人直接连着游戏,获得了2fps 的风格迁移画面:wmW品论天涯网

图片wmW品论天涯网

据官方博客介绍,在 A100上,SDXL Turbo 可在207毫秒内生成512x512图像(即时编码 + 单个去噪步骤 + 解码,fp16),其中单个 UNet 前向评估占用了67毫秒。wmW品论天涯网

如此,我们可以判断,文生图已经进入「实时」时代。wmW品论天涯网

这样的「即时生成」效率,与前不久爆火的清华 LCM 模型看起来有些相似,但是它们背后的技术内容却有所不同。Stability 在同期发布的一篇研究论文中详细介绍了该模型的内部工作原理。该研究重点提出了一种名为对抗扩散蒸馏(Adversarial Diffusion Distillation,ADD)的技术。SDXL Turbo 声称的优势之一是它与生成对抗网络(GAN)的相似性,特别是在生成单步图像输出方面。wmW品论天涯网

图片wmW品论天涯网

论文地址:https://static1.squarespace.com/static/6213c340453c3f502425776e/t/65663480a92fba51d0e1023f/1701197769659/adversarial_diffusion_distillation.pdfwmW品论天涯网

论文细节wmW品论天涯网

简单来说,对抗扩散蒸馏是一种通用方法,可将预训练扩散模型的推理步数量减少到1-4个采样步,同时保持高采样保真度,并有可能进一步提高模型的整体性能。wmW品论天涯网

为此,研究者引入了两个训练目标的组合:(i)对抗损失和(ii)与 SDS 相对应的蒸馏损失。对抗损失迫使模型在每次前向传递时直接生成位于真实图像流形上的样本,避免了其他蒸馏方法中常见的模糊和其他伪影。蒸馏损失使用另一个预训练(且固定)的 扩散模型作为教师,有效利用其广泛知识,并保留在大型扩散模型中观察到的强组合性。在推理过程中,研究者未使用无分类器指导,进一步减少了内存需求。他们保留了模型通过迭代细化来改进结果的能力,这比之前基于 GAN 的单步方法具有优势。wmW品论天涯网

训练步骤如图2所示:wmW品论天涯网

图片wmW品论天涯网

表1介绍了消融实验的结果,主要结论如下:wmW品论天涯网

图片wmW品论天涯网

接下来是与其他 SOTA 模型的对比,此处研究者没有采用自动化指标,而是选择了更加可靠的用户偏好评估方法,目标是评估 prompt 遵循情况和整体图像。wmW品论天涯网

实验通过使用相同的 prompt 生成输出来比较多个不同的模型变体(StyleGAN-T++、OpenMUSE、IF-XL、SDXL 和 LCM-XL)。在盲测中,SDXL Turbo 以单步击败 LCM-XL 的4步配置,并且仅用4步击败 SDXL 的50步配置。通过这些结果,可以看到 SDXL Turbo 的性能优于最先进的 multi-step 模型,其计算要求显著降低,而无需牺牲图像质量。wmW品论天涯网

图片wmW品论天涯网

图7可视化了有关推理速度的 ELO 分数。wmW品论天涯网

图片wmW品论天涯网

表2比较了使用相同基础模型的不同 few-step 采样和蒸馏方法。结果显示,ADD 的性能优于所有其他方法,包括8步的标准 DPM 求解器。wmW品论天涯网

图片wmW品论天涯网

作为定量实验结果的补充,论文也展示了部分定性实验结果,展示了 ADD-XL 在初始样本基础上的改进能力。图3将 ADD-XL(1step)与 few-step 方案中当前最佳基线进行了比较。图4介绍了 ADD-XL 的迭代采样过程。图8将 ADD-XL 与其教师模型 SDXL-Base 进行了直接比较。正如用户研究所示,ADD-XL 在质量和 prompt 对齐方面都优于教师模型。wmW品论天涯网

图片wmW品论天涯网

图片wmW品论天涯网

图片wmW品论天涯网

更多研究细节,可参考原论文。wmW品论天涯网

本网除标明“PLTYW原创”的文章外,其它文章均为转载或者爬虫(PBot)抓取; 本文只代表作者个人观点,不代表本站观点,仅供大家学习参考。本网站属非谋利性质,旨在传播马克思主义和共产主义历史文献和参考资料。凡刊登的著作文献侵犯了作者、译者或版权持有人权益的,可来信联系本站删除。 本站邮箱[email protected]

相关文章