人工智能

清华大学提出全新加速训练大模型方法SoT

字号+作者: 来源:站长之家 2023-11-24 09:25 评论(创建话题) 收藏成功收藏本文

要点:研究人员提出了一种名为“Skeleton-of-Thought(SoT)”的创新方法,旨在加速大型语言模型(LLMs)的生成速度,以解决其处理速度较慢的问题。与传统方法不'...

要点:rdZ品论天涯网

研究人员提出了一种名为“Skeleton-of-Thought(SoT)”的创新方法,旨在加速大型语言模型(LLMs)的生成速度,以解决其处理速度较慢的问题。rdZ品论天涯网

与传统方法不同,SoT不对LLMs进行复杂的修改,而是将其视为黑匣子,专注于优化输出内容的组织,通过引入独特的两阶段过程来提高响应速度。rdZ品论天涯网

通过对12个不同领域的模型进行测试,使用Vicuna-80数据集,研究团队观察到SoT在八个模型上实现了1.13x到2.39x的速度提升,而不牺牲答案质量。rdZ品论天涯网

站长之家(ChinaZ.com)11月24日 消息:近日,微软研究和清华大学的研究人员共同提出了一种名为“Skeleton-of-Thought(SoT)”的全新人工智能方法,旨在解决大型语言模型(LLMs)生成速度较慢的问题。rdZ品论天涯网

尽管像GPT-4和LLaMA等LLMs在技术领域产生了深远影响,但其处理速度的不足一直是一个制约因素,特别是在对延迟敏感的应用中,如聊天机器人、协同驾驶和工业控制器。SoT方法与传统的性能提升方法不同,它不对LLMs进行复杂的修改,而是将其视为黑匣子,并侧重于优化输出内容的组织结构。rdZ品论天涯网

image.pngrdZ品论天涯网

项目地址:https://github.com/imagination-research/sot/rdZ品论天涯网

SoT引入了一个独特的两阶段过程,首先引导LLM构建答案的骨架,然后在第二阶段使LLM同时扩展骨架中的多个要点。这一方法不仅提高了LLMs的响应速度,还在不需要对模型架构进行复杂调整的情况下实现了这一目标。rdZ品论天涯网

为了评估SoT的有效性,研究团队对12个不同领域的模型进行了广泛测试,使用了Vicuna-80数据集,其中包含了来自编码、数学、写作和角色扮演等各个领域的问题。rdZ品论天涯网

通过使用FastChat和LLMZoo的度量标准,研究团队观察到SoT在八个模型上实现了1.13x到2.39x的速度提升,而且这些提升并没有牺牲答案质量。这表明SoT不仅可以显著提高响应速度,还能够在各种问题类别中保持或提升答案质量。rdZ品论天涯网

因此,SoT方法为解决LLMs速度较慢的问题提供了一种有前景的解决方案。研究团队的创新方法将LLMs视为黑匣子,并专注于数据级别的效率优化,为加速内容生成提供了新的视角。通过引导LLMs构建答案的骨架,然后进行并行扩展,SoT有效地提高了响应速度,为人工智能领域的动态思维过程开辟了新的探索方向,鼓励向更高效、更多才多艺的语言模型发展。rdZ品论天涯网

本网除标明“PLTYW原创”的文章外,其它文章均为转载或者爬虫(PBot)抓取; 本文只代表作者个人观点,不代表本站观点,仅供大家学习参考。本网站属非谋利性质,旨在传播马克思主义和共产主义历史文献和参考资料。凡刊登的著作文献侵犯了作者、译者或版权持有人权益的,可来信联系本站删除。 本站邮箱[email protected]