人工智能

微软开源最强小参数大模型—Phi-3 Mini

字号+作者: 来源:​ AIGC开放社区公众号 2024-04-24 08:47 评论(创建话题) 收藏成功收藏本文

声明:本文来自于微信公众号AIGC开放社区(ID:AIGCOPEN),作者:AIGC开放社区,授权站长之家转载发布。4月23日晚,微软在官网开源了小参数的大语言模型——Phi-3-min'...

声明:本文来自于微信公众号AIGC开放社区(ID:AIGCOPEN),作者:AIGC开放社区,授权站长之家转载发布。TzS品论天涯网

4月23日晚,微软在官网开源了小参数的大语言模型——Phi-3-mini。TzS品论天涯网

据悉,Phi-3-mini是微软Phi家族的第4代,有预训练和指令微调多种模型,参数只有38亿训练数据却高达3.3T tokens,比很多数百亿参数的模型训练数据都要多,这也是其性能超强的主要原因之一。TzS品论天涯网

Phi-3-mini对内存的占用极少,可以在 iPhone14等同类手机中部署使用该模型。尽管受到移动硬件设备的限制,但每秒仍能生成12个tokens数据TzS品论天涯网

值得一提的是,微软在预训练Phi-3-mini时使用了合成数据,能帮助大模型更好地理解语言架构、表达方式、文本语义理解、逻辑推理以及特定业务场景的专业术语等。TzS品论天涯网

开源地址:https://huggingface.co/collections/microsoft/phi-3-6626e15e9585a200d2d761e3TzS品论天涯网

Ollama地址:https://ollama.com/library/phi3TzS品论天涯网

技术报告:https://arxiv.org/abs/2404.14219TzS品论天涯网

图片TzS品论天涯网

2023年6月,微软首次推出了专用于Python编码的模型Phi-1,只有13亿参数却在编程领域击败了GPT-3.5等知名模型,这让微软看到小参数模型的广阔发展空间。TzS品论天涯网

随后在Phi-1基础之上,微软推出了具备推理、文本生成、内容总结、起草邮件的大语言模型Phi-1.5,成为当时最强小参数模型之一。TzS品论天涯网

图片TzS品论天涯网

2023年12月,微软在Phi-1.5基础之上开发了Phi-2,参数只有27亿并且在没有人类反馈强化学习和指令微调的情况下,击败了130亿参数的Llama-2和70亿参数的Mistral;在编码和数学测试中,Phi-2的性能甚至超过了700亿参数的Llama-2TzS品论天涯网

本次发布的Phi-3系列集合了之前三代所有的优秀技术特征,并使用了海量高质量数据集、创新的训练、微调方法,使其成为目前最强的开源小参数模型。TzS品论天涯网

Phi-3-mini架构简单介绍TzS品论天涯网

Phi-3-mini采用了transformer架构,支持4K和128K上下文窗口,也是同类小模型中第一个支持128K的开源产品。TzS品论天涯网

图片TzS品论天涯网

高质量训练数据集是Phi-3-mini性能超强的重要原因之一,微软使用了3.3T tokens数据集包括:经过严格质量筛选的网络公开文档、精选的高质量教育数据和编程代码;TzS品论天涯网

通过合成数据创建的教科书式数据,例如,数学、编码、常识推理、世界常识、心理科学等;TzS品论天涯网

高质量聊天格式的监督数据,涵盖各种主题以反映人类在不同方面的偏好,例如,遵循指令、真实性、诚实性等。TzS品论天涯网

在训练策略方面,为了帮助Phi-3-mini更好地吸收合成数据,微软使用了迭代训练策略:初始阶段,Phi-3-mini使用了公开网络数据,学会了基本的语法、语义和上下文理解;TzS品论天涯网

图片TzS品论天涯网

迭代阶段,将合成数据与网络数据合并构建全新的训练集,并对Phi-3-mini进行迭代训练,进一步强化模型的理解和生成能力,并且进行多次重复训练。TzS品论天涯网

测试数据方面,Phi-3Mini在MMLU、GSM-8K、MedQA、BigBench-Hard等知名基准测试平台中,对语言理解、逻辑推理、机器翻译、编码等进行了综合测试。TzS品论天涯网

结果显示,Phi-3-mini仅通过少量样本提示,在语言理解、编码、数学的性能超过了参数更大的模型,整体性能非常出色TzS品论天涯网

图片TzS品论天涯网

微软表示,在未来几周内还会发布70亿参数的Phi-3-small和140亿参数的Phi-3-medium两款小模型。其中,Phi-3-medium的性能可媲美Mixtral8x7B 和GPT-3.5,资源消耗却更少。TzS品论天涯网

本网除标明“PLTYW原创”的文章外,其它文章均为转载或者爬虫(PBot)抓取; 本文只代表作者个人观点,不代表本站观点,仅供大家学习参考。本网站属非谋利性质,旨在传播马克思主义和共产主义历史文献和参考资料。凡刊登的著作文献侵犯了作者、译者或版权持有人权益的,可来信联系本站删除。 本站邮箱[email protected]