人工智能

阿里刚开源32B大模型,我们立马测试了“弱智吧”

字号+作者: 来源:量子位公众号 2024-04-08 08:58 评论(创建话题) 收藏成功收藏本文

声明:本文来自于微信公众号 量子位(ID:QbitAI),作者:金磊,授权站长之家转载发布。阿里的通义千问(Qwen),终于拼齐了1.5系列的最后一块拼图——正式开源Qwen1.5-32'...

声明:本文来自于微信公众号 量子位(ID:QbitAI),作者:金磊,授权站长之家转载发布。PPl品论天涯网

阿里的通义千问(Qwen),终于拼齐了1.5系列的最后一块拼图——PPl品论天涯网

正式开源Qwen1.5-32BPPl品论天涯网

图片PPl品论天涯网

话不多说,直接来看“成绩单”。PPl品论天涯网

这次官方pick同台竞技的“选手”是Mixtral8x7B模型和同为Qwen1.5系列的72B模型PPl品论天涯网

从结果上来看,Qwen1.5-32B已经在多项评测标准中超越或追平Mixtral8x7B:PPl品论天涯网

图片PPl品论天涯网

并且即便是在与自家更大参数模型PK过程中,Qwen1.5-32B也用“以小博大”的姿势展现出了较好的性能。PPl品论天涯网

用通义千问团队成员的话来说就是:PPl品论天涯网

这个模型显示出了与72B模型相当的性能,特别是在语言理解、多语言支持、编码和数学能力等方面。PPl品论天涯网

在推理和部署过程中,成本还会更加友好。PPl品论天涯网

图片PPl品论天涯网

不仅如此,即便是再拉来其它体量相当的大模型“选手”,Qwen1.5-32B在多项评测中的成绩依旧较为亮眼:PPl品论天涯网

图片PPl品论天涯网

除此之外,团队还做了一项比较有意思的测试——长文本评估任务,“大海捞针”PPl品论天涯网

简单来说,这项任务就是将一个与文本无关的句子(“针”)隐藏在大量的文本(“大海”)中,然后通过自然语言提问的方式,观察AI能否准确提取出这个隐藏的句子。PPl品论天涯网

从结果上来看,Qwen1.5-32B在32k tokens的上下文中性能表现良好。PPl品论天涯网

图片PPl品论天涯网

不过有一说一,刚才所展示的也还仅是Qwen1.5-32B在评分上的成绩,至于具体到实际体验过程中,效果又会如何呢?PPl品论天涯网

大战一波“弱智吧”

自打大模型火爆以来,“弱智吧”就一直成了检测大模型逻辑能力的标准之一,江湖戏称为“弱智吧Benchmark”PPl品论天涯网

(“弱智吧”源自百度贴吧,是一个充满荒谬、离奇、不合常理发言的中文社区。)PPl品论天涯网

图片PPl品论天涯网

而且就在前几天,“弱智吧”还登上正经AI论文,成了最好的中文训练数据,引发了一波不小的热议。PPl品论天涯网

这项研究正是来自中科院深圳先进技术研究院、中科院自动化研究所,滑铁卢大学等众多高校、研究机构联合团队。PPl品论天涯网

图片PPl品论天涯网

刚好此次Qwen1.5-32B在开源的同时,也一并放出了在线体验的demo,那么当它俩碰到一起,会擦出怎样的火花?PPl品论天涯网

请听第一题:PPl品论天涯网

我爸妈结婚为什么不邀请我?PPl品论天涯网

图片PPl品论天涯网

Qwen1.5-32B很准确地回答出了“你的父母在结婚时你尚未出生,因此他们无法邀请你参加他们的婚礼”。PPl品论天涯网

继续第二题:PPl品论天涯网

为什么睡觉过夜的地方叫酒店,喝酒的地方叫夜店?PPl品论天涯网

图片PPl品论天涯网

面对这道很经典的问题,Qwen1.5-32B也能做到追根溯源地做正经科普。PPl品论天涯网

再来第三道第四道:PPl品论天涯网

高中如果想提高升学率,为什么不直接招大学生?PPl品论天涯网

网吧能上网,弱智吧为什么不能上弱智?PPl品论天涯网

图片PPl品论天涯网

图片PPl品论天涯网

不难看出,Qwen1.5-32B都能够给出准确的答案。PPl品论天涯网

尤其是在第四道问题上,它甚至直接指出了逻辑性的问题:PPl品论天涯网

问题似乎不太恰当或者存在误解。PPl品论天涯网

嗯,Qwen1.5-32B是一个经住了“弱智吧Benchmark”的大模型。PPl品论天涯网

至于其它关于常识、数学、编程等能力的效果,家人们可以亲自去体验一番了。PPl品论天涯网

如何做到的?

正如我们刚才所述,Qwen1.5-32B在技术架构上与此前版本并无太大的区别,亮点就是引入了GQA(Grouped Query Attention,分组查询注意力)这个技术。PPl品论天涯网

这也正是它能够在相对较小的体量之下,能够做到性能较优且快速部署的关键。PPl品论天涯网

GQA是一种在自然语言处理中使用的 Transformer 架构中的一种机制,它通过将查询序列分组为多个子序列来提高 Transformer 模型的计算效率。PPl品论天涯网

这种方法可以有效地减少计算复杂度,同时保留 Transformer 模型的表示能力。PPl品论天涯网

图片PPl品论天涯网

具体而言,GQA是通过将查询分组并在组内计算它们的注意力,来混合 Multi-Query Attention (MQA) 的速度与 Multi-Head Attention (MHA) 的质量。PPl品论天涯网

GQA 通过将查询头分为组,每个组共享单个键头和值头,来实现这一点,从而在质量和速度之间取得平衡。PPl品论天涯网

如此一来,GQA的引入就降低了注意力计算的数量,从而加速了推理时间。PPl品论天涯网

图片PPl品论天涯网

最后,奉上Qwen1.5-32B在HuggingFace的体验入口,感兴趣的朋友可以去体验啦~PPl品论天涯网

参考链接:PPl品论天涯网

[1]https://qwenlm.github.io/zh/blog/qwen1.5-32b/PPl品论天涯网

[2]https://huggingface.co/spaces/Qwen/Qwen1.5-32B-Chat-demoPPl品论天涯网

[3]https://github.com/QwenLM/Qwen1.5PPl品论天涯网

[4]https://klu.ai/glossary/grouped-query-attentionPPl品论天涯网

PPl品论天涯网

本网除标明“PLTYW原创”的文章外,其它文章均为转载或者爬虫(PBot)抓取; 本文只代表作者个人观点,不代表本站观点,仅供大家学习参考。本网站属非谋利性质,旨在传播马克思主义和共产主义历史文献和参考资料。凡刊登的著作文献侵犯了作者、译者或版权持有人权益的,可来信联系本站删除。 本站邮箱[email protected]