人工智能

人类数据要被OpenAI用完了,然后呢?

“比大更大”(Biggerthanbigger)当年苹果的一句广告词,用来形容现在AI领域最热的大语言模型,看起来也没什么不对。从十亿、百亿再到千亿,大模型的参数走向逐'...

“比大更大”(Biggerthanbigger)当年苹果的一句广告词,用来形容现在AI领域最热的大语言模型,看起来也没什么不对。从十亿、百亿再到千亿,大模型的参数走向逐渐狂野,相应的,用来训练AI的数据量,也以指数级暴增。ULm品论天涯网

以OpenAI的GPT为例,从GPT-1到GPT-3,其训练数据集就从4.5GB指数级增长到了570GB。ULm品论天涯网

不久前的Databricks举办的Data+AI大会上,a16z创始人MarcAndreessen认为,二十几年来互联网积累的海量数据,是这一次新的AI浪潮兴起的重要原因,因为前者为后者提供了可用来训练的数据。ULm品论天涯网

但是,即便网民们在网上留下了大量有用或者没用的数据,对于AI训练来说,这些数据,可能要见底了。ULm品论天涯网

人工智能研究和预测组织Epoch发表的一篇论文里预测,高质量的文本数据会在2023-2027年之间消耗殆尽ULm品论天涯网

尽管研究团队也承认,分析方法存在严重的局限,模型的不准确性很高,但是很难否认,AI消耗数据集的速度是恐怖的。ULm品论天涯网


ULm品论天涯网

低质量文本、高质量文本和图像的机器学习数据消耗和数据生产趋势|EpochAIULm品论天涯网

当“人类”数据用完,AI训练不可避免地,将会使用AI自己生产的内容。不过,这样的“内循环”,却会产生很大挑战。ULm品论天涯网

不久前,来自剑桥大学、牛津大学、多伦多大学等高校的研究人员发表论文指出,用AI生成的内容作为训练AI,会导致新模型的崩溃。ULm品论天涯网

所以,AI训练用“生成数据”会带来崩溃的原因是什么?还有救吗?ULm品论天涯网

01AI“近亲繁殖”的后果ULm品论天涯网

在这篇名为《递归的诅咒:用生成数据训练会使模型遗忘》的论文中,研究人员指出,“模型崩溃”是一个几代模型的退化过程ULm品论天涯网

前一代模型生成的数据会污染下一代模型,经历几代模型的“传承”,它们就会错误地感知世界。ULm品论天涯网


ULm品论天涯网

模型迭代示意图|arxivULm品论天涯网

模型崩溃分为两步:ULm品论天涯网

在早期模型崩溃中,模型会开始失去原始数据的分布信息,也就是“干净的人类数据”;ULm品论天涯网

在晚期,模型会把上几代模型对原始分布信息的“错误认知”纠缠到一起,从而曲解现实。ULm品论天涯网

研究人员首先从头训练了小样本模型GMM(高斯混合模型)和VAE(变量自动编码器)。以GMM为例,下图最左是原始数据的正态分布。ULm品论天涯网

可以看到,模型一开始对数据的拟合非常好。到第50次迭代时,基础数据分布开始被错误感知。当迭代来到2000次时,模型已经收敛到一个很小的点,这意味着模型开始稳定输出错误答案ULm品论天涯网


ULm品论天涯网

GMM在迭代0、50、100、150、200、350、2000时拟合数据的例子|arxivULm品论天涯网

为了验证预训练对实验结果的影响,研究人员又在Meta开发的1.25亿参数的LLM(大语言模型)OPT-125m上进行了实验,数据集来自维基百科的wikitext2。ULm品论天涯网

和GMM、VAE这类小模型不同,LLM从头训练的成本非常高,所以它们都是经过预训练的。实验结果如下:ULm品论天涯网


ULm品论天涯网

输入:根据PoyntzWright的说法,在1360年之前有些活动通常由一位主要石匠和一小队流动的石匠完成,辅以当地教区劳工。但其他作者则否认了这种模式,相反提出主建筑师借鉴英国垂直式风格设计了教区教堂的尖塔。ULm品论天涯网

输出:ULm品论天涯网

第0代:复兴建筑,例如伦敦的圣约翰大教堂。现存最早的垂直复兴建筑可以追溯到[email protected]@世纪的根西岛圣母教堂,该教堂建于19世纪末。有两种类型的垂直式教堂:那些ULm品论天涯网

第1代:建筑,如罗马的圣彼得大教堂或布宜诺斯艾利斯的圣彼得大教堂。没有证据表明这些建筑是在教皇英诺森三世统治时期建造的,但有可能是在他的继任者英诺森教皇统治时期建造的。ULm品论天涯网

第7代:英国的建筑。在接受《纽约时报》采访时,赖特说:"我不认为我能够做我想做的事情有什么问题。它只是对我不起作用。"他补充说:"我不知道你是否可以称之为有趣、ULm品论天涯网

第9代:建筑。除了成为全球黑@-@尾巴大野兔、白@-@尾巴大野兔、蓝@-@尾巴大野兔、红@-@尾巴大野兔、黄@-的最大栖息地之一ULm品论天涯网

可以看到,到第9代模型时,输出的内容已经完全不知所云。ULm品论天涯网

论文的作者之一IliaShumailov说,随着时间的推移,人工智能生成的数据中的错误不断累积,主要的模型在接受这些数据的训练后,会对现实产生更加扭曲的看法ULm品论天涯网

02为什么会模型崩溃?ULm品论天涯网

“模型崩溃”产生的最主要原因,还是因为AI并非真正的智能,它展现出的近似“智能”的能力背后,其实是基于大量数据的统计学方法。ULm品论天涯网

基本上,所有无监督机器学习算法都遵循一条简单的模式:给定一系列数据,训练出一个能描述这些数据规律的模型ULm品论天涯网

这个过程中,训练集里更大概率出现的数据就更容易被模型重视,小概率出现的数据就会被模型低估。ULm品论天涯网

举个例子,假设我们需要记录100次骰子的投掷结果,来计算每个面出现的概率。理论上,每个面出现的概率是一样的。在现实生活中,由于样本量较小,可能3、4出现的情况比较多。但对于模型而言,它学习到的数据就是3、4出现的概率更高,因而会倾向于生成更多的3和4的结果。ULm品论天涯网


ULm品论天涯网

“模型崩溃”示意图|arxivULm品论天涯网

另一个次要原因是函数近似误差。也很好理解,因为真实函数往往很复杂,实际运用中,经常使用简化的函数来近似真实函数,这就导致了误差。ULm品论天涯网

03真没招了吗?杞人忧天!ULm品论天涯网

所以,在人类数据越来越少的情况下,AI训练真的没机会了吗?ULm品论天涯网

并不是,用于训练AI数据枯竭的问题,还有方法能解决:ULm品论天涯网

数据“隔离”ULm品论天涯网

随着AI越来越强大,已经有越来越多的人开始使用AI辅助自己工作,互联网上的AIGC爆炸式增长,“干净的人类数据集”可能会越来越难以找到。ULm品论天涯网

Google深度学习研究部门Google大脑GoogleBrain的高级研究科学家DaphneIppolito就表示,在未来,要找到高质量、有保证的无人工智能训练数据将变得越来越棘手ULm品论天涯网

这就好比是一个患有高危遗传病的人类始祖,但是又拥有极其强大的繁殖能力。在短时间内他就把子孙繁衍到了地球每一个角落。然后在某一时刻,遗传病爆发,人类全体灭绝。ULm品论天涯网

为了解决“模型崩溃”,研究团队提出的一种方法是“先行者优势”,也就是保留对干净的人工生成数据源的访问,将AIGC与之分隔开来。ULm品论天涯网

同时,这需要很多社区和公司联合起来,共同保持人类数据不受AIGC污染。ULm品论天涯网

不过,人类数据的稀缺意味着这其中有利可图,已经有一些公司行动起来了。Reddit就表示将大幅提高访问其API的费用。该公司的管理人员表示,这些变化(在一定程度上)是对人工智能公司窃取其数据的回应。Reddit创始人兼首席执行官SteveHuffman告诉《纽约时报》:“Reddit的数据库真的很有价值。”“但我们不需要把所有这些价值都免费提供给一些全球最大的公司。”ULm品论天涯网

合成数据ULm品论天涯网

同时,专业基于AI生成的数据,早已有效用于AI的训练。在一些从业者看来,现在担心AI生成的数据会导致模型崩溃,多少有点“标题党”。ULm品论天涯网

光轮智能创始人谢晨光告诉极客公园,国外论文提到的,用AI生成数据训练AI模型导致崩溃,实验方法比较偏颇。即便是人类数据,也有能用和不能用之分,而论文提到的实验,则是不加分辨地直接用来训练,而并非有针对性的经过质检、效用性判定后作为训练数据,显然有可能会造成模型崩溃。ULm品论天涯网

谢晨透露,其实OpenAI的GPT-4,就采用了大量前一代模型GPT-3.5生产的数据来进行训练。SamAltman也在近期的采访中表达,合成数据是解决大模型数据短缺的有效方法。而其中的关键在于,有一整套体系来区分AI生成的数据中,哪些可用,哪些不可用,并不断根据训练后模型的效果进行反馈——这是OpenAI能笑傲AI江湖的绝招之一,这家公司并不只是融的钱多,买的算力多这么简单而已。ULm品论天涯网

在AI行业内,使用合成数据来进行模型训练,早已经成为一个尚未为外人所知的共识。ULm品论天涯网

曾经在英伟达、Cruise、和蔚来等公司负责自动驾驶仿真的谢晨认为,以目前各种大模型训练的数据量来看,未来2-3年,人类数据确实有可能“枯竭”,但是基于专业化体系和方法,AI生成的合成数据,会成为用之不竭的有效数据来源。并且使用场景并不局限于文字和图片,像自动驾驶、机器人等行业需要的合成数据量,将远远大于文本的数据量。ULm品论天涯网

AI三要素,数据、算力、算法,数据来源有着落了,算法大模型在不断进化,唯一剩下的算力压力,相信英伟达创始人黄仁勋是可以顺利解决的。ULm品论天涯网

本网除标明“PLTYW原创”的文章外,其它文章均为转载或者爬虫(PBot)抓取; 本文只代表作者个人观点,不代表本站观点,仅供大家学习参考。本网站属非谋利性质,旨在传播马克思主义和共产主义历史文献和参考资料。凡刊登的著作文献侵犯了作者、译者或版权持有人权益的,可来信联系本站删除。 本站邮箱[email protected]