网络第5域

AI预测30秒内火灾轰燃 中国石油大学参与研究

字号+作者: 来源:大数据文摘 2021-11-30 19:57 评论(创建话题) 收藏成功收藏本文

这种爆燃的现象往往是由于在建筑物内部,当室内大火燃烧形成的充满室内各个房间的可燃气体和没充分燃烧的气体达到一定浓度时,形成的爆燃。这时候,室内其他'...


o4f品论天涯网


o4f品论天涯网

这种爆燃的现象往往是由于在建筑物内部,当室内大火燃烧形成的充满室内各个房间的可燃气体和没充分燃烧的气体达到一定浓度时,形成的爆燃。o4f品论天涯网

这时候,室内其他房间的没接触大火的可燃物也一起被点燃而燃烧,也就是“轰”的一声,室内所有可燃物都被点燃,所以整个过程也被称为“轰燃”。o4f品论天涯网


o4f品论天涯网

正是因为“轰燃”的不可预测性,才如此危险。o4f品论天涯网

本周,一项研究利用图神经网络(GNN)建立了一个系统,以学习模拟火灾中不同数据源(以节点和边表示)之间的关系,从而提前预测接下来的30秒内是否会发生“轰燃”现象。o4f品论天涯网

这一研究有望帮助消防员判断室内建筑是否会发生“轰燃”,从而拯救生命。论文发表在《人工智能工程应用》上。o4f品论天涯网


o4f品论天涯网

30秒内预测“轰燃”,准确率可达92.1%o4f品论天涯网

一般来说,消防员得凭自己的经验来判断是否会发生这样的“轰燃”:o4f品论天涯网

1.产生灼伤人皮肤的辐射热,几秒钟后辐射热强度可达10kw/m²。o4f品论天涯网

2.室内的热气流使人无法坚持,室内的对流温度接近450℃。o4f品论天涯网

3.门热的烫人,木质部分温度平均超过320℃。o4f品论天涯网

4.由门上蹿出的火舌几乎达到顶棚,大量的辐射热由顶棚反射到室内的可燃物上。o4f品论天涯网

5.烟气降至离地面1m左右,空气中的热层部分占据上部空气,驱使热分解产物下降。o4f品论天涯网

为了更好的帮助消防员预测“轰燃”,研究人员据此收集了各种各样的数据,从建筑布局,表面材料,火灾条件,通风配置,烟雾探测器的位置,以及房间的温度分布,模拟了17种不同建筑类型的41000起虚拟火灾,共使用了25000个火灾案例来训练该模型,其余的16000个案例用于微调和测试。o4f品论天涯网

在17种不同的房屋中,新模型的准确性取决于它需要处理的数据量以及它寻求提供给消防员的准备时间。o4f品论天涯网

最终,该模型的准确率(在提前30秒的情况下,最好为92.1%)超过了其他五种基于机器学习的工具,包括项目组自己之前的模型,重要的是,该工具产生了最少的假阴性,即在危险的情况下,模型未能预测到“轰燃”。o4f品论天涯网

这个模型被称为FlashNet,将FlashNet放入了一些场景中,在这些场景中,FlashNet事先并不了解建筑物的具体情况以及建筑物内部的火灾情况,这与消防员经常遇到的情况类似。o4f品论天涯网

“考虑到这些限制,该工具的性能是相当有希望的”,论文作者Tam表示。然而,作者在带领FlashNet跨越终点线之前还有很长的路要走。作为下一步,他们计划用真实世界的数据而不是模拟数据对模型进行实战测试。o4f品论天涯网

从4到5个房间,到十几个房间,预测难度Maxo4f品论天涯网

轰燃一般倾向于在大约600摄氏度(1100华氏度)突然爆发,然后可以导致温度进一步上升。o4f品论天涯网

此前那的预测工具要么依赖于来自燃烧建筑物的恒定温度数据流,要么利用机器学习来填补可能发生的热探测器受高温影响而丢失的数据。o4f品论天涯网

到目前为止,大多数基于机器学习的预测工具,包括作者之前开发的一种工具,都经过了在单一、熟悉的环境中操作的训练。但在现实中,消防队员面对的是极其复杂的环境,当他们冲进火灾区域时,他们可能对现场情况、火灾发生的位置或门是开着还是关着一无所知。o4f品论天涯网

“我们以前的模型只需要在一个建筑布局中考虑四到五个房间,但是当建筑布局切换时,你有13到14个房间,这对模型来说可能是一个噩梦,”Tam说,“对于真实世界的应用,我们相信关键是建立一个适用于许多不同建筑的通用模型。”o4f品论天涯网

GNN作为一种善于根据节点和线的图做出判断的机器学习算法,可以表示不同的数据点及其彼此之间的关系,非常适合这样的任务。o4f品论天涯网


o4f品论天涯网

“GNN经常用于估计到达时间,或ETA,在交通中,你可以(用GNN)分析10到50条不同的道路。同时合理地利用这类信息是非常复杂的,所以我们才有了使用GNN的想法,”论文作者、香港理工大学研究助理教授YujunFu说。o4f品论天涯网

除了美国国家标准与技术研究院(NIST)、Google以及香港理工大学,中国石油大学也参与了这项研究。o4f品论天涯网

本网除标明“PLTYW原创”的文章外,其它文章均为转载或者爬虫(PBot)抓取。 本文只代表作者个人观点,不代表本站观点,仅供大家学习参考;转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网站编辑联系,我们将及时更正、删除,谢谢。 本站邮箱[email protected]