在开发人工智能系统时,数据科学家面临的关键问题不仅是收集大量数据来训练系统。此外还需要选择一种格式来表达系统权重,权重是人工智能从训练数据中学习到影响系统预测效果的重要因素。权重使得GPT-3这样的人工智能系统能够从一个长句子提示自动生成整个段落,还能让DALL-E2人工智能基于某个特定标题生成逼真的肖像画。
人工智能系统权重常用的格式有半精度浮点数FP16和单精度浮点数FP32,前者使用16位数据表示系统权重,后者则使用32位。半精度浮点数以及更低精度浮点数能减少了训练和运行人工智能系统所需的内存空间,同时还加快计算速度,甚至减少占用的带宽资源和耗电量。但因为位数较单精度浮点数更少,准确性会有所降低。
然而,包括
英伟达、ARM和英特尔表示,他们将让FP8浮点处理格式成为一种开放标准,其他公司无需许可证即可使用。三家公司在一份白皮书对FP8进行了详细描述。纳拉西姆汉表示,这些规范都将提交给技术标准化组织IEEE,看FP8格式能否成为人工智能行业的通用标准。
纳拉西姆汉说:“我们相信,一个通用的交换格式将带来硬件和软件平台的快速进步,提高互操作性,从而推进人工智能计算的进步。”
当然,三家公司之所以不遗余力推动FP8格式成为通用交换格式也是出于自身研究的考虑。英伟达的GH100Hopper架构已经实现对FP8格式的支持,英特尔的Gaudi2人工智能训练芯片组也支持FP8格式。
但通用的FP8格式也会使SambaNova、
【查看完整讨论话题】 | 【用户登录】 | 【用户注册】